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Research

The goals of the Tox21 collaboration are to 
prioritize chemicals for in vivo testing, iden-
tify mechanisms of toxicity, and predict 
adverse responses to environmental chemicals 
in humans (Collins et al. 2008; Shukla et al. 
2010). Low throughput animal and tissue 
models are yielding ground to high through-
put screening (HTS) methods that enable 
the simultaneous assessment of large num-
bers of compounds. For applications of HTS 
in traditional drug discovery, assays are usu-
ally conducted at a single test concentration 
(e.g., 10 μM) to find compounds with strong 
pharmacological activity while reducing the 
risk for false positives. This strategy is not as 
relevant for toxicological research and toxicity 
testing, which also seeks to find compounds 
with weak activity while reducing the risk for 
false negatives. However, quantitative high 
throughput screening (qHTS) provides an 
opportunity to meet Tox21 objectives, hold-
ing the potential for wide chemical coverage 
and reduced cost of testing on a per-substance 
basis. Moreover, the ability of a substance to 
induce a toxicological response is better under-
stood by analyzing the response profile over a 
broad concentration range than by evaluating 
effects at one or a few concentrations.

The Tox21 collaboration began formally in 
2008 with Phase I (Proof of Concept) consist-
ing of qHTS studies conducted at the National 

Institutes of Health Chemical Genomics 
Center (NCGC) in 1,536-well–format and 
mid-throughput studies conducted in sup-
port of the U.S. Environmental Protection 
Agency’s (EPA) ToxCast™ program. In 
conjunction with Tox21 Phase I, the NTP 
and U.S. EPA have produced an extensive 
set of concentration–response data on some 
2,800 substances screened at the NCGC in 
> 70 qHTS assays and on 320  substances 
tested across > 500 in vitro and lower organism 
in vivo assays by various contract and govern-
ment laboratories. In Tox21 Phase II, qHTS 
data will soon be produced for a library con-
taining approximately 10,000 compounds. 
Analyses of Phase I data indicate reproducible 
levels of compound behavior that match previ-
ously known toxicological responses (Huang 
et al. 2008). These experiments are typically 
analyzed using a heuristics-based curve classifi
cation algorithm that does not use uncertainty 
in model fits to make activity calls (Inglese 
et al. 2006). However, classification of chemi-
cal activity has also been based on clustering by 
pattern dissimilarity (Zhang et al. 2009), a heu-
ristics approach incorporating curve fit p-values 
(Huang et al. 2011), testing for significance of 
response using mathematical models (Parham 
et al. 2009), or a preliminary test estimation 
(PTE) procedure robust to variance structure 
(S. Peddada, personal communication).

Because of the potential for complex 
concentration–response behavior, toxicologi-
cal evaluation has traditionally been based on 
manual scrutiny of concentration–response (or 
dose–response) data. But the large data volume 
surrounding qHTS renders manual inspection 
of individual profiles restrictively laborious, 
subjective, and prone to human error. Indeed, 
the human eye cannot consistently discrimi-
nate calls based on small (but statistically rel-
evant) trends or differences, and conventional 
curve fit diagnostics are not feasible when con-
sidering the large number of compounds used 
within qHTS studies. Heuristics approaches to 
screen qHTS data sets may identify candidates 
with positive activity, but such methods are not 
based on the principles of statistical hypothesis 
testing. On the other hand, statistical assess-
ments based on fits to a nonlinear function 
may not capture important responses occur-
ring outside of the specified model framework. 
For instance, a maximal response at the lowest 
tested concentration will not be adequately 
explained by fitting the conventional Hill 
equation (Hill 1910). Given these consider-
ations, there is currently no suitable approach 
for making statistically rigorous activity calls in 
an automated manner for the massive amount 
of data emerging from large-scale toxicity test-
ing within the NTP and Tox21 qHTS efforts. 
In addition, the operating characteristics of the 
limited number of activity call algorithms pub-
lished to date have not yet been systematically 
explored in the published literature.

Address correspondence to K.R. Shockley, Biostatistics 
Branch, National Institute of Environmental Health 
Sciences, National Institutes of Health, Research 
Triangle Park, NC 27709 USA. Telephone: (919) 
541-3033. Fax: (919) 541-4311. E-mail: shockleykr@
niehs.nih.gov

Supplemental Material is available online (http://
dx.doi.org/10.1289/ehp.1104688).

I thank R. Tice (Biomolecular Screening Branch, 
National Institute of Environmental Health 
Sciences (NIEHS) and G. Kissling and S. Peddada 
(Biostatistics Branch, NIEHS) for reviewing the 
manuscript and providing helpful suggestions. I 
thank S. Harris (SRA International, Inc.) for help 
with programming the curve fitting procedures. 
Finally, I thank F. Parham (Biomolecular Screening 
Branch, NIEHS) for assistance with analyzing the 
androgen receptor agonist data.

This research was supported in part by the 
Intramural Research Program of the National 
Institutes of Health, NIEHS.

The author declares he has no actual or potential 
competing financial interests.

Received 2 November 2011; accepted 10 May 2012.

A Three-Stage Algorithm to Make Toxicologically Relevant Activity Calls 
from Quantitative High Throughput Screening Data
Keith R. Shockley

Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human 
Services, Research Triangle Park, North Carolina, USA

Background: The ability of a substance to induce a toxicological response is better understood by 
analyzing the response profile over a broad range of concentrations than at a single concentration. 
In vitro quantitative high throughput screening (qHTS) assays are multiple-concentration experi-
ments with an important role in the National Toxicology Program’s (NTP) efforts to advance toxi-
cology from a predominantly observational science at the level of disease-specific models to a more 
predictive science based on broad inclusion of biological observations.

Objective: We developed a systematic approach to classify substances from large-scale 
concentration–​response data into statistically supported, toxicologically relevant activity categories.

Methods: The first stage of the approach finds active substances with robust concentration–
response profiles within the tested concentration range. The second stage finds substances with 
activity at the lowest tested concentration not captured in the first stage. The third and final stage 
separates statistically significant (but not robustly statistically significant) profiles from responses 
that lack statistically compelling support (i.e., “inactives”). The performance of the proposed algo-
rithm was evaluated with simulated qHTS data sets.

Results: The proposed approach performed well for 14-point-concentration–response curves with 
typical levels of residual error (σ ≤ 25%) or when maximal response (|RMAX|) was > 25% of the 
positive control response. The approach also worked well in most cases for smaller sample sizes 
when |RMAX| ≥ 50%, even with as few as four data points.

Conclusions: The three-stage classification algorithm performed better than one-stage classifica-
tion approaches based on overall F-tests, t-tests, or linear regression.
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To meet this need, we propose a three-
stage framework based on formal statistical 
testing of toxicologically relevant hypotheses. 
Although much of the data generated to date 

has been produced from unreplicated designs, 
this approach can accommodate various levels 
of replication and provides a consistent plat-
form for making activity calls. In the first 

stage of the algorithm, compounds with a 
robust concentration–response relationship 
are identified by comparing the best fit to a 
nonlinear model with a horizontal line (no 
concentration–response) and classified as 
“active.” Compounds not detected as “active” 
in the first stage are tested for activity at the 
lowest tested concentration in the second 
stage. Finally, compounds with a statistically 
less robust concentration–response are classi-
fied as “inconclusive” and distinguished from 
“inactive” calls in the third stage. Receiver 
operating characteristic (ROC) curves of 
simulated qHTS data are used to assess the 
overall ability of the algorithm to detect active 
compounds under toxicologically relevant 
conditions produced in simulated data sets.

Methods
Development of the algorithm. Our approach 
assumes that the toxicological importance of 
a response profile generated in qHTS applica-
tions should be determined by a robust frame-
work to impartially classify tested substances 
and limit the return of false negatives. A set 
of simple decision rules are used to make con-
sistent activity calls from the wealth of com-
plex response patterns resulting from high 
throughput chemical profiling. These decision 
rules are formalized with statistical procedures 
and automated through a systematic com-
putational workflow. Substances classified as 
“actives” have response values exceeding the 
assay detection limit (see below) and may fall 
into one of two different categories: a) com-
pounds with concentration–response curves 
within the tested concentration range, and 
b) compounds eliciting maximal responses 
at the lowest tested concentration. The first 
category of substances can be subdivided 
into two subgroups: a) compounds produc-
ing statistically and toxicologically robust 
concentration–response trends supported by 
multiple data points in different regions of 
each profile (see “Stage 1: Test for robust con-
centration–response,” below), and b) com-
pounds that may fit sigmoidal curves better 
than flat lines in a mathematical or statisti-
cal sense but are comparatively nonrobust 
by toxicological standards (e.g., curves with 
only one data point exceeding the detection 
limit). Substances underlying such nonrobust 
concentration–response profiles are labeled 
“inconclusive.” “Inconclusive” calls may arise 
due to low levels of replication, variability in 
assay performance, or confounding of factors 
in nonrandomized designs (e.g., experimental 
drift of scanning machines).

A three-stage algorithm (Figure 1) is pro-
posed to classify each substance in a tested 
chemical library as “active,” “inactive,” or 
“inconclusive” (Table 1). There are two types 
of actives: a) ACTIVE*[±1] substances describe 
robust concentration–response curves and 

Figure 1. Three-stage algorithm used to classify the activity of a substance from normalized qHTS data. The 
tree is defined by stages (circles), where the result of each stage determines the next stage to apply. The 
process continues until the path terminates in a call (rectangles). The number in the brackets designates 
the direction of the assay as described in the text (“+” refers to activation; “–“ refers to inhibition).

Stage 1
Is there a robust

detected response?

Stage 3
Is there a less robust
detected response?

Stage 2
Is there activity even 

without a robust
response?

ACTIVE*[±1]

ACTIVE*[±2]

INCONCLUSIVE*[±3] INACTIVE*

Yes No

Yes No

Yes No

Table 1. Criteria for classification algorithm.

Stage/condition Activity call
Stage 1

(1) MAX(Ri
a) > positive DetLimb ACTIVE*[1] (activator)

(2) H0: Ri = Σ Ri /nc is rejected for F-test (NLSd fit) and  
H0: Ri = Σ wi

eRi /n is rejected for F-test (WNLSf fit)
(3) RMAXg > R0h (NLS fit) and RMAX > R0 (WNLS fit)
(1) MIN(Ri) < negative DetLim ACTIVE*[–1] (inhibitor)
(2) H0: Ri = Σ Ri /n is rejected (NLS fit) and  

H0: Ri = Σ wiRi /n is rejected (WNLS fit)
(3) RMAX < R0 (NLS fit) and RMAX < R0 (WNLS fit)

Stage 2
(1) Not active in Stage 1 ACTIVE*[2] (potent activator)
(2) H0: Ri ≤ DetLim is rejected using weighted t-test

(1) Not active in Stage 1 ACTIVE*[–2] (potent inhibitor)
(2) H0: Ri ≥ DetLim is rejected using weighted t-test

Stage 3
(1) Not active in Stage 1 or Stage 2 INCONCLUSIVE*[3] (putative activator)
(2) MAX(Ri) > positive DetLim
(3) H0: Ri = Σ Ri /n is rejected for F-test (NLS fit) and (4.a) or  

H0: Ri = Σ wiRi /n is rejected for F-test (WNLS fit) and (4.b)
(4.a) RMAX > R0 (NLS fit)
(4.b) RMAX > R0 (WNLS fit)
(1) Not active in Stage 1 or Stage 2 INCONCLUSIVE*[–3] (putative inhibitor)
(2) MIN(Ri) < negative DetLim
(3) H0: Ri = Σ Ri /n is rejected (NLS fit) and (4.a) or  

H0: Ri = Σ wiRi /n is rejected (WNLS fit) and (4.b)
(4.a) RMAX < R0 (NLS fit)
(4.b) RMAX < R0 (WNLS fit)
(1) Not active in Stage 1 or Stage 2 or Stage 3 INACTIVE*

aRi, response at concentration i. bDetLim, magnitude of the detection limit in a typical qHTS assay is generally 25–30% 
of the measured positive control response. cn, total number of concentrations tested. dNLS, nonlinear least squares 
regression. ewi, weight for Ri. f WNLS, weighted nonlinear least squares regression. gRMAX, maximal activity from the 
Hill Equation. hR0, baseline activity from the Hill Equation. [For more detail, see Supplemental Material, pp. 3–4 (http://
dx.doi.org/10.1289/ehp.1104688)].
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b) ACTIVE*[±2] agents are putatively active 
≤ the lowest tested concentration. Less robust 
responses are assigned INCONCLUSIVE*[±3] 
and substances with no discernable activ-
ity within the tested concentration range are 
classified as INACTIVE*. Numbers inside 
brackets refer to the stage where the call was 
made (i.e., STAGE 1, STAGE 2, or STAGE 
3 in Figure 1). The “+” or “–” sign inside 
each bracket corresponds to the direction of 
the response. Accordingly, ACTIVE*[1] and 
INCONCLUSIVE*[3] describe response 
curves in which the response signal tends 
to increase with increasing concentration 
(activators), whereas ACTIVE*[–1] and 
INCONCLUSIVE*[–3] describe response 
curves in which the response signal tends 
to decrease with increasing concentration 
(inhibitors). Calls labeled ACTIVE*[2] (or 
ACTIVE*[–2]) refer to substances with mean 
responses significantly greater (or lower) than 
the detection limit of the assay.

Detection limits define a response range 
in which the normalized signal can be reliably 
measured within a given experiment, and are 
usually set to 3 SD above or below the nor-
malized signal intensities observed in negative 
control plates. A detection limit of 25–30% 
of the positive control is typical within Tox21 
efforts. The positive detection limit for activa-
tor assays is found by adding the assay noise 
level to the control response; the negative 

detection limit for inhibitor assays is calcu-
lated by subtracting the assay noise level from 
the control response.

Example concentration–response pro-
files and their activity calls from qHTS data 
generated with the NTP compound library 
used in Tox21 Phase I are shown in Figure 2. 
More extensive data can be found in NTP’s 
Chemical Effects in Biological Systems data-
base (Waters et al. 2008).

The following form of the Hill equation 
model is used here:
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where Ri is the response value for concen-
tration i, R0 is the baseline activity (lower 
asymptote of the sigmoidal curve for activa-
tors, upper asymptote of the sigmoidal curve 
for inhibitors), RMAX is the maximal activ-
ity (upper asymptote for activators, lower 
asymptote for inhibitors), and |RMAX – R0| 
defines the maximal response compared to 
baseline activity for activators and inhibitors. 
In Equation 1, Ci refers to the test concen
tration of each response, AC50 is the concen-
tration yielding 50% of the maximal response 
produced by the tested compound (i.e., EC50 
for activators, IC50 for inhibitors), SLOPE 

determines the shape of the curve and error 
is the residual error of the model. [For tech-
nical details describing curve fitting, see 
Supplemental Material, p. 3 (http://dx.doi.
org/10.1289/ehp.1104688)].

Stage 1: Test for robust concentration–
response. The objective of the first stage is to 
find chemicals with a robust dose–response 
relationship within the tested concentration 
range. To satisfy the robust criterion, response 
profiles should exhibit statistical significance in 
both unweighted nonlinear least squares (NLS) 
and weighted nonlinear least squares (WNLS) 
regression approaches [see Supplemental 
Material, p. 3 (http://dx.doi.org/10.1289/
ehp.1104688)]. The NLS approach weights 
all data points equally and, consequently, may 
not discriminate adequately between a profile 
with data along two clearly defined asymptotes 
and a less robust profile in which one asymp-
tote is supported by a single point (Figure 2). 
In contrast, the WNLS criterion weights each 
response point i from n concentrations (Ri, 
i = 1, …, n), so that more influence is given to 
neighboring data points with similar response 
levels than neighboring data points with very 
different responses. An active compound from 
Stage 1 (i.e., ACTIVE*[±1]) will

Have a maximum response greater than •	
positive detection limit (for activators) or a 
minimum response less than the negative 
detection limit (for inhibitors).
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1 × 10–10 1 × 10–8 1 × 10–6

ASSAY ER agonist
5-Fluorouracil

ASSAY ER agonist
17β-E2

ASSAY ER agonist
5α-Dihydrotestosterone

ASSAY XRCC knockout
Cadmium acetate, dihydrate

ASSAY PPAR antagonist
Tetrakis(hydroxymethyl)

phosphonium sulfate

ASSAY AR antagonist
o-Nitrotoluene

ASSAY AR agonist
N,N-Dimethylaniline

1 × 10–4 1 × 10–10 1 × 10–8 1 × 10–6 1 × 10–4 1 × 10–10 1 × 10–8 1 × 10–6 1 × 10–4

1 × 10–10 1 × 10–8 1 × 10–6 1 × 10–4 1 × 10–10 1 × 10–8 1 × 10–6 1 × 10–4 1 × 10–10 1 × 10–8 1 × 10–6 1 × 10–4

1 × 10–10 1 × 10–8 1 × 10–6 1 × 10–4

Concentration (M) Concentration (M) Concentration (M)

Concentration (M) Concentration (M) Concentration (M)

Concentration (M)

Putative activator
Putative inhibitor
Inactive
Outlier

pF.NLS = 3.63 × 10–8

pF.WNLS = 2.25 × 10–12

p t.student = 0.112 (1)
p t.weighted = 0.927 (0.918)

pF.NLS = 7.51 × 10–12

pF.WNLS = 2.48 × 10–11

p t.student = 1 (0.273)
p t.weighted = 0.988 (0.979)

pF.NLS = 0.171
pF.WNLS = 0.525
p t.student = 1 (3.82 × 10–8)
p t.weighted = 1 (2.2 × 10–9)

pF.NLS = 2.66 × 10–6

pF.WNLS = 0.523
p t.student = 1 (0.939)
p t.weighted = 1 (1)

pF.NLS = 0.00702
pF.WNLS = 0.246
p t.student = 1.48 × 10–10 (1)
p t.weighted = 1.57 × 10–14 (1)

pF.NLS = 1.41 × 10–8

pF.WNLS = 0.517
p t.student = 0.98 (1)
p t.weighted = 1 (1)

pF.NLS = 0.245
pF.WNLS = 0.523
p t.student = 1 (1)
p t.weighted = 1 (1)

Figure 2. Example response profiles from experimental data obtained within Tox21 qHTS studies. p-Values shown are from the overall F-test using the nonlinear 
least squares approach (pF.NLS), the overall F-test using the weighted nonlinear least squares approach (pF.WLS), Student’s t-test comparing the mean response to 
25% response followed by comparison to –25% response in parentheses (pt.student), and a weighted t-test comparing the mean response to 25% response followed 
by comparison to –25% response in parentheses (pt.weighted). Activity calls resulting from the proposed algorithm are indicated on the figure.
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Fit the four-parameter Hill model better than •	
a horizontal line using both NLS and WNLS 
regression at a selected significance level.
Show increasing response (•	 RMAX > R0 for 
ACTIVE*[1] calls) or decreasing response 
(RMAX < R0 for ACTIVE*[–1] calls) with 
increasing concentration.

Stage 2: Test for activity at lowest tested 
concentration. In the second stage, com-
pounds not detected as active in the first stage 
are evaluated by comparing the distribu-
tion of measured responses to the detection 
limit of the assay. Compounds with activity 
at the lowest tested concentration are consid-
ered to be relatively potent since their AC50 
values are presumably less than (or equal to) 
the lowest tested concentration. To find these 
“potent responders,” tests for mean response 
greater than the detection limit of the assay 
are performed using weighted t‑tests with the 
same weighting scheme used for WNLS [see 
Supplemental Material, p. 4 (http://dx.doi.
org/10.1289/ehp.1104688)]. The weighted 
t‑test ensures that outlier responses are not 
given unwarranted weight in statistical assess-
ment. A compound active in this stage will 
have activity at the lowest tested concentra-
tion that is greater than the positive assay 
detection limit (ACTIVE*[2]) or decreased 
activity at the lowest tested concentration that 
is lower than the negative assay detection limit 
(ACTIVE*[–2]).

Stage 3: Test for nonrobust concentration–
response. In the third stage, compounds not 
detected as active in the first or second stage 
are evaluated. Compounds with signifi-
cant fits to the Hill model using either NLS 
or WNLS, but not both, are classified as 
INCONCLUSIVE*[±3]. For example, profiles 
found in Stage 3 may be incomplete curves in 
which the curve fit is driven by a single data 
point at a high test concentration (Figure 2). 
An inconclusive compound will

Have a maximum response greater than •	
positive detection limit (for activators) or a 
minimum response less than the negative 
detection limit (for inhibitors).
Fit the four-parameter Hill model better •	
than a horizontal line (no response) in either 

the unweighted (NLS) or weighted (WNLS) 
curve fit.
Show increasing response (•	 RMAX > R0 for 
INCONCLUSIVE*[3]) or decreasing response 
(RMAX < R0 for INCONCLUSIVE*[–3]) 
with increasing concentration.

Compounds that are not classified as 
active or inconclusive in Stage 1, Stage 2, or 
Stage 3 are putatively assigned inactive.

Simulation study. Activators (RMAX > 
R0) and inhibitors (RMAX < R0) simulated 
from Equation 1 will produce fully symmet-
ric profiles and yield identical performance 
metrics for equivalent R0, |RMAX  –  R0|, 
AC50 and SLOPE. Therefore, simulations 
were conducted only for activators. A total of 
10,000 hypothetical substances were simu-
lated for each concentration–response data set 
with R0 = 0%, where each data set included 
2,000 simulated actives (|RMAX| ≥ 25% of 
positive control activity) and 8,000 simulated 
inactives (RMAX = 0%). Three different simu-
lation settings were explored (see Table 2). 
Case 1 explored the performance of the algo-
rithm under different error structures. Case 2 
assessed the effect of the SLOPE parameter 
when residual error was set to a value typical 
of qHTS data [σ = 25%; see Supplemental 
Material, Table S1 (http://dx.doi.org/10.1289/
ehp.1104688)]. Case 3 examined the perfor-
mance of the algorithm when various numbers 
of data points (1, 3, 5, 7, or 10) were removed 
to produce a smaller effective sample size n. 
The R package “drc” (Ritz and Streibig 2005) 
was used to fit all concentration–response 
models, and outlier detection followed a two-
step algorithm that was combined with curve 
fitting (Wang et al. 2010). (For more informa-
tion about the simulation see Supplemental 
Material, pp. 4–5.)

Type I error rates were estimated for null 
hypothesis cases (RMAX  = 0%) by evalu-
ating the empirical proportions of trials in 
which the algorithm assigned a simulated 
null hypothesis as active (ACTIVE*[±1] or 
ACTIVE*[±2]). For computational purposes, 
INCONCLUSIVE*[±3] calls were treated as 
inactive. Sensitivities were estimated by evalu-
ating the empirical proportions of true active 

cases (|RMAX| ≥ 25%) assigned as active 
(ACTIVE*[±1] or ACTIVE*[±2]). In all cases, 
the significance level (a) for statistical testing 
was set to 0.05.

The area under receiver operating charac-
teristic (ROC) curves was used as the primary 
statistic to assess performance. ROC graphs 
describe the relationship between sensitivity 
(true positive rate or power) and 1-specificity 
(false positive rate or type I error rate) of a 
classification method and are not influenced 
by skewed class distribution or unequal clas-
sification error costs (Fawcett 2006). The area 
under the curve (AUC) of each ROC graph 
was calculated using the trapz() function in 
the R package “caTools” (Tuszynski 2009). 
AUC ranges from 0.0 to 1.0 and provides 
a probability describing how well the algo-
rithm can correctly classify true actives and 
true inactives based on the known parameter 
values used to simulate the data. Random per-
formance is indicated by AUC = 0.5. Here, 
AUC = 0.75 is chosen to indicate good per-
formance, whereas AUC = 0.9 indicates excel-
lent performance.

Results
Analysis of androgen receptor agonist assay 
data. Chemical genomics profiling data from 
a previously published androgen agonist assay 
was obtained for the 1,408 compounds in the 
NTP Tox21 compound collection (Huang 
et  al. 2011). Compounds in that study 
were dissolved in dimethyl sulfoxide and 
exposed to 14 concentrations ranging from 
4.90 × 10–4 μM to 76.63 μM. For p < 0.05, 
the three-stage algorithm proposed here clas-
sified 82 compounds as active (26 activators 
and 58 inhibitors), 100 compounds as incon-
clusive (55 activators and 44 inhibitors), and 
the remaining 1,225 compounds as inactive. 
These calls were compared to activity calls 
generated by a curve class procedure (Huang 
et al. 2011) and the Parham method (Parham 
et al. 2009) and results obtained from single-
stage tests, including F-tests based on NLS 
or WNLS curve fits, robust linear regres-
sion, Student’s t-tests and weighted t‑tests 
(Table 3). There was substantial overlap and 
notable differences between these outcomes 
even though all approaches used the same 
statistical significance threshold (p < 0.05). Of 
the 26 activator hits identified by the three-
stage algorithm, the curve class method placed 
15 in curve class 1 (full sigmoidal response 
profiles), 8 in curve class 2 (partial response 
profiles with one asymptote), and 1 com-
pound each into curve classes 3 (single point 
activity), 4 (inactive) and 5 (undefined). The 
Parham method shared 19 of the 26 three-
stage actives, with 2 inconclusive activators, 
1  inconclusive inhibitor, and 4  inactives. 
The NLS and WLS methods each contained 
the same 26 compounds in common with 

Table 2. Parameter values used in the simulations.

Simulation feature Case 1a Case 2 Case 3a

True AC50 values (10–3, 10–1, 10) (10–3, 10–1, 10) (10–3, 10–1, 10)
True |RMAX| values (25, 50, 100) (25, 50, 100) (25, 50, 100)
True R0 values 0 0 0
True SLOPE values 1 (0.01, 0.1, 0.5, 1, 2, 10, 100) 1
Number of parameter configurations 9b 63 9b

Residual ERROR structures (σ)c (5%, 10%, 25%, 50%, 100%, f(Ci)) 25% 25%
No. of data points (n) 14 14 (4, 7, 9, 11, 13)
aA more extensive parameter space of 49 parameter configurations was used to generate contour plots for Case 1 
(Figure 3), where AC50 values (μM) were set to (10–4, 10–3, 10–2, 10–1, 1, 10, 100) and |RMAX| values (percentage of posi-
tive control) were set to (10, 25, 50, 75, 100, 125, 150). bThe 49 parameter configurations from footnote a, above, define 
a more extensive parameter space that is used to generate contour plots. cResidual error values were modeled as 
ε ~ N(0, σi

2) for σi = (5%, 10%, 25%, 50%, 100%, and f(Ci)), where σi is expressed as percent of positive control activity 
at concentration i and f(Ci) = 9.7355 + 0.1146 × Ci. [For more detail, see Supplemental Material, Equation 1 (http://dx.doi.
org/10.1289/ehp.1104688).]
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the three-stage approach, but the robust 
linear regression approach had only 21 of 
the 26 actives in common. Calls based on 
Student’s t‑test and the weighted t‑test shared 
11 and 7 compounds, respectively, in com-
mon with the three-stage approach. The full 
comparison between approaches is presented 
in Table 3.

Overview of simulation studies. The per-
formance of the algorithm was investigated 
for all 171 simulated qHTS data sets by 
examining combinations of AC50 (three lev-
els), |RMAX| (three levels), and R0 (one level) 
for three different cases (Table 2). Case 1 
varied the error structure, Case 2 varied the 
Hill slope, and Case 3 varied the number of 
available data points. An AUC correspond-
ing to each ROC curve was calculated for 
each parameter configuration, except when 
σ  =  5% (9 data sets) since no false posi-
tives were returned under this condition. 
Resulting AUCs from the remaining 162 
data sets were compared with the proposed 
algorithm versus overall F-tests comparing 
the fit to the Hill model and a straight line 
(NLS or WNLS), t‑tests (Student’s t‑tests or 
weighted t‑tests) and robust linear regression 
as shown in Supplemental Material, Figure S1 
(http://dx.doi.org/10.1289/ehp.1104688). 
In general, performance was not good (AUC 
≤ 0.75) when |RMAX| = 25%, but the pro-
posed algorithm showed similar or improved 
performance compared to overall F-tests in 
almost every scenario, and performed consid-
erably better than overall F-tests for AC50 = 
0.001 μM. The proposed method usually out-
performed t‑tests when AC50 = 10 μM (fewer 
data points with detectable responses), but did 

not perform as well as t‑tests in some instances 
when AC50 < 10 μM (increased number of 
detectable responses). The proposed approach 
outperformed robust linear regression in 
almost every scenario. Compared to the pro-
posed method, t‑tests generally had smaller 
type I error rates (see Supplemental Material, 
Figure S2), but t‑tests also had noticeably 
reduced power when AC50 > 0.001 μM (see 
Supplemental Material, Figure S3).

Case 1: 14-point-concentration–response 
curves. A total of 54 simulated qHTS data 
sets were used to evaluate the proposed 
algorithm for nine configurations involving 
changes in AC50 (three  levels) and |RMAX| 
(three levels) for R0 = 0 and SLOPE = 1 under 
six different residual error structures (Table 2). 
Residual errors were modeled as ε ~ N(0, σi

2) 
for σi = (5%, 10%, 25%, 50%, 100%, and 
f(Ci)), where σi is expressed as percent of posi-
tive control activity at concentration i and 
f(Ci) = 9.7355 + 0.1146 × Ci. The function 
f(Ci) is based on the best fit line between σi 
and concentration derived from qHTS data 
generated from human nuclear receptor 
agonist-mode assays [Huang et al. 2011; see 
also Supplemental Material, Table S1 (http://
dx.doi.org/10.1289/ehp.1104688)]. Table 4 
summarizes the operating characteristics of 
the proposed approach for Case 1. Type I 
(false positive) error rates do not exceed 0.05 
for true inactives when σi = (5%, 10%, 25%, 
f(Ci)), remained close to 0.05 for σi = 50%, 
and consistently exceeded 0.05 when 
σi = 100% (see also Supplemental Material, 
Figure S2). Notably, type I error rates increase 
with increasing residual error, with no false 
positives at σi = 5%. For known actives, the 

proposed approach exhibits greater power 
with increasing |RMAX|. The power decreases 
with increasing residual error and is almost 
always above 80% when |RMAX| = 100% in 
constant error (σi = 25%) and heteroscedastic 
error (σi = f(Ci)) scenarios (see Supplemental 
Material, Figure S3). As shown in Table 4, 
the proposed algorithm performed well 
(AUC ≥ 0.75) for scenarios with typical levels 
of residual error (σ ≤ 25% in most cases in 
Supplemental Material, Table S1), and with 
even better performance (AUC ≥ 0.9) for 
|RMAX| > 25%. Table 4 also illustrates that 
an increasing proportion of activity calls are 
ACTIVE*[2] (rather than ACTIVE*[1]) with 
increasing residual error. Figure 3 summarizes 
the performance of the proposed approach 
using contour plots and indicates that AUC 
> 0.75 for all levels of AC50 within the tested 
range when |RMAX| > 25%. Performance 
diminished with increasing residual error, 
and for σ = 100% the approach was only bet-
ter than random prediction for large maxi-
mal responses (|RMAX| > 75%) and lower 
potencies (AC50 < 1 μM).

Case 2: Evaluating the SLOPE param-
eter. Combinations of AC50 (three  levels), 
|RMAX| (three levels), and SLOPE (seven lev-
els) were used to investigate the performance 
of 63 parameter configurations for a range 
of SLOPE parameter settings (Table 2). As 
shown in Figure 4, performance was similar 
for most SLOPE settings, where SLOPE var-
ied from SLOPE = 10–4 to SLOPE = 100 and 
|RMAX| took one of three values (25%, 50%, 
100%). At |RMAX|  =  25%, the proposed 
algorithm performed poorly for every param-
eter configuration, while at |RMAX| = 100%, 

Table 3. Comparing activity calls from the three-stage approach to other methods for an androgen receptor agonist qHTS assay.a

Activity call strategy ACTIVE*[1] ACTIVE*[–1] ACTIVE*[2]b ACTIVE*[–2] INCONCL*[3] INCONCL*[–3] INACTIVE*
Three-stage approach 26 56 0 2 55 44 1225
Revised NCGC curve classc

1.1 (–1.1) 8 (0) 0 (0) — 0 (0) 0 (0) 0 (0) 0 (0)
1.2 (–1.2) 2 (0) 0 (11) — 0 (0) 0 (0) 0 (0) 0 (0)
1.3 (–1.3) 2 (0) 0 (0) — 0 (0) 0 (0) 0 (0) 0 (0)
1.4 (–1.4) 3 (0) 0 (6) — 0 (0) 0 (0) 0 (1) 0 (4)
2.1 (–2.1) 3 (0) 0 (0) — 0 (0) 3 (0) 0 (0) 0 (0)
2.2 (–2.2) 1 (0) 0 (15) — 0 (0) 3 (0) 0 (9) 0 (2)
2.3 (–2.3) 1 (0) 0 (0) — 0 (0) 2 (0) 0 (0) 0 (0)
2.4 (–2.4) 3 (0) 0 (20) — 0 (0) 12 (0) 0 (16) 2 (19)
3 (–3) 1 (0) 0 (3) — 0 (0) 19 (0) 0 (15) 5 (7)
4 1 1 — 2 11 1 1186
5 1 0 — 0 5 2 0

Parham methodd

Active INCR (DECR) 19 (0) 0 (0) — 1 (0) 11 (0) 0 (0) 4 (0)
Inconclusive INCR (DECR) 2 (1) 2 (30) — 0 (0) 20 (1) 1 (14) 36 (28)
Inactive 4 24 — 1 23 29 1157

Actives from other approaches
NLS F-test INCR (DECR)e 26 (0) 0 (56) — 1 (1) 53 (0) 0 (43) 86 (270)
WNLS F-test INCR (DECR)f 26 (0) 0 (56) — 0 (0) 2 (7) 1 (1) 64 (402)
Robust linear regression m > 0 (m < 0)g 21 (0) 0 (49) — 0 (1) 11 (0) 0 (23) 1 (2)
Student’s t-test μ > 25% (μ < –25%) 11 (0) 0 (0) — 0 (2) 0 (0) 0 (0) 0 (0)
Weighted t-test μ > 25% (μ < –25%) 7 (0) 0 (1) — 0 (2) 0 (0) 0 (0) 0 (0)

aShows the number of predicted activators (or inhibitors, in parentheses) for each activity call strategy that are shared with the three-stage approach. bMissing data because there 
are no ACTIVE*[2] calls. cSee Huang et al. (2011). dSee Parham et al. (2009). eNonlinear least squares F-test and fweighted nonlinear least squares with RMAX > R0 (activators) or 
RMAX < R0 (inhibitors). gCalculated using rlm() function in R package “MASS” (Venables and Ripley 2002).
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the proposed approach performed similarly 
well for every SLOPE parameter value exam-
ined. When |RMAX| = 50%, most parameter 
configurations yielded similar performance, 
except when SLOPE ≤ 0.5.

Case 3: Effects of sample size. A defined 
number of data points (0, 1, 3, 5, 7, or 10) 
were randomly removed within each substance 

in each 14-point data curve in order to evalu-
ate the operating characteristics of the pro-
posed algorithm for different sample sizes 
n (Tables 2 and 5). While type I error rates 
generally increased with n, they were < 0.03 
in every case examined here. Power to detect 
actives increased with increasing n. The per-
formance of the proposed approach was good 

in most cases (AUC ≥ 0.75) with |RMAX| set 
to 50% or 100% and AC50 set to 0.001 μM or 
0.1 μM, even with as few as four data points. 
However, the power was greatly reduced 
when |RMAX| = 25%. As shown in Table 5, 
an increasing proportion of activity calls are 
ACTIVE*[1] (rather than ACTIVE*[2]) with 
increasing sample size.

Figure 3. Contour plots to evaluate classification performance of proposed approach to make activity calls from 14-point concentration–response curves. The 
plots summarize the performance characteristics of the proposed classification algorithm based on AUC of the ROC curve generated from a broad parameter 
space of |RMAX| and AC50 under different residual error scenarios. Regions of each plot with AUC ≥ 0.75 indicate moderately good performance, and regions 
with AUC > 0.9 represent excellent performance. The significance level for statistical tests is 0.05.
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Table 4. Case 1 error rates and power of proposed method for different residual error structures.a

True 
AC50

True 
|RMAX|

Type I error rate Power

5%b 10% 25% 50% 100% f(Ci) 5%b 10% 25% 50% 100% f(Ci)
0.001 25 0.000 0.001 

(100)
0.021 
(85.8)

0.054 
(37.0)

0.118 
(17.4)

0.007 
(100)

0.314** 
(72.1)

0.228* 
(40.4)

0.206* 
(18.2)

0.229 
(11.4)

0.237 
(11.8)

0.201 
(40.9)

0.001 50 0.000 0.001 
(100)

0.020 
(87.9)

0.059 
(38.7)

0.116 
(18.4)

0.006 
(100)

1.000** 
(26.6)

0.991** 
(22.9)

0.855** 
(7.7)

0.598** 
(7.3)

0.406 
(6.9)

0.987** 
(20.3)

0.001 100 0.000 0.001 
(100)

0.024 
(86.8)

0.054 
(42.1)

0.124 
(20.7)

0.010 
(100)

1.000** 
(19.1)

1.000** 
(27.0)

0.999** 
(15.3)

0.963** 
(8.2)

0.773* 
(5.8)

1.000** 
(26.8)

0.1 25 0.000 0.001 
(100)

0.023 
(87.3)

0.060 
(41.3)

0.127 
(19.6)

0.008 
(100)

0.966** 
(99.9)

0.664** 
(99.5)

0.197* 
(73.1)

0.188 
(34.6)

0.206 
(18.0)

0.576* 
(99.3)

0.1 50 0.000 0.001 
(100)

0.020 
(87.4)

0.065 
(40.1)

0.122 
(17.4)

0.010 
(100)

1.000** 
(99.5)

0.996** 
(98.1)

0.684** 
(71.2)

0.403* 
(37.2)

0.324 
(21.3)

0.990** 
(98.7)

0.1 100 0.000 0.001 
(100)

0.024 
(84.9)

0.062 
(37.3)

0.119 
(16.2)

0.008 
(100)

1.000** 
(99.6)

0.999** 
(99.4)

0.994** 
(94.4)

0.850** 
(55.0)

0.582* 
(27.1)

1.000** 
(99.6)

10 25 0.000 0.001 
(100)

0.022 
(88.3)

0.059 
(40.7)

0.127 
(17.9)

0.007 
(100)

0.366** 
(100)

0.332* 
(100)

0.100 
(93.5)

0.111 
(47.7)

0.154 
(26.3)

0.275* 
(100)

10 50 0.000 0.0004 
(100)

0.022 
(89.0)

0.060 
(35.9)

0.118 
(18.8)

0.009 
(100)

0.952** 
(100)

0.896** 
(99.9)

0.328* 
(89.9)

0.194 
(51.3)

0.207 
(24.5)

0.773* 
(99.9)

10 100 0.000 0.001 
(100)

0.019 
(92.0)

0.057 
(37.4)

0.123 
(20.2)

0.010 
(100)

0.948** 
(100)

0.955** 
(100)

0.791** 
(97.3)

0.440* 
(66.7)

0.315 
(30.3)

0.916** 
(100)

aType I error rates and power are shown as a fraction ranging from 0 to 1, with the percentage of ACTIVE*[1] actives out of the total actives (equal to ACTIVE*[1]/
(ACTIVE*[1] + ACTIVE*[2]) × 100%) indicated in parentheses. bFor 5% residual error, there were no false positives in the simulation. *AUC ≥ 0.75. **AUC ≥ 0.9.
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Discussion
Assessment of health risks posed by an envi-
ronmental chemical generally proceeds 
through costly and time intensive studies such 
as the 2-year rodent bioassay. These in vivo 
assays can take several years to complete and 
cost millions of dollars. Yet, an estimated 
30,000 unique chemicals are in wide com-
mercial use (Judson et al. 2008; Muir and 
Howard 2006) and most of these substances 
have not been tested for adverse effects on 
humans or the environment. Accordingly, 

there is a need to prioritize chemicals for stan-
dard toxicity testing and to find alternative 
strategies to evaluate the large inventory of 
potentially harmful substances (Judson et al. 
2010). qHTS holds potential to meet these 
objectives by augmenting the low through-
put animal and tissue testing models with 
approaches that simultaneously assess large 
numbers of compounds over a wide chemical 
space with reduced cost per substance.

Chemical prioritization efforts and 
structure activity prediction modeling often 

utilize activity calls as input (e.g., Johnson 
et al. 2009; Martin et al. 2011; Reif et al. 
2010) and, consequently, depend on consis-
tent and reliable methods for making activity 
calls from the underlying data. However, the 
incomplete concentration–response profiles 
frequently observed in qHTS data render non-
linear statistical modeling and parameter test-
ing challenging. It is not possible to determine 
whether response variances are homoscedastic 
(constant) or heteroscedastic (not constant) 
in unreplicated data sets, and few degrees of 

Figure 4. Case 2 ROC curves for different parameter configurations for σ = 25% error. Sensitivity versus (1 – Specificity) are plotted for 63 different parameter con-
figurations of AC50 (0.001, 0.1, 10 μM), |RMAX| (25%, 50%, 100%), and SLOPE (0.01, 0.1, 0.5, 1, 2, 10, 100) for R0 = 0. The diagonal line indicates random performance. 
The significance level for statistical tests is 0.05.
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freedom may be available for statistical test-
ing after curve fitting and outlier detection. 
Furthermore, traditional methods to assess 
nonlinear regression model fits depend on 
graphical diagnostics, but visual inspection 
of residual plots is not feasible in the qHTS 
analysis context that can involve thousands 
of compounds and hundreds of assays. An 
approach to activity call evaluation was devel-
oped here in response to these concerns.

The proposed three-stage activity call 
algorithm accommodates large volumes of 
qHTS data and does not require replicate 
assessments. Actives and inconclusives must 
produce a response that exceeds the assay 
detection limit and meet a prespecified sta-
tistical significance threshold. However, while 
the p-values obtained from statistical test-
ing are based on uncertainty in model fits, 
in practice the true errors are not known. 
Calculated error estimates may be too low 
(producing false positives) or too large (pro-
ducing false negatives) in some instances. In 
this study, data were simulated under a vari-
ety of scenarios (Table 2) to quantify algo-
rithm performance over a broad range of 
possible profiles. Nevertheless, when dealing 
with large chemical libraries it may be useful 
to employ moderated test statistics like those 
developed for DNA microarray analyses to 
stabilize variance components [e.g., Cui et al. 
(2005); Smyth (2004)].

Similar to a PTE approach (S. Peddada, 
personal communication), the method 
described here performs well under conditions 
of homoscedasticity and heteroscedasticity 
(Table 4). The algorithm also performs well for 
moderate-to-high response levels across a broad 
range of parameter space (Figure 3) and with as 

few as four data points when |RMAX| ≥ 50% 
and AC50 ≤ 0.1 μM (Table 5). The method can 
identify substances with full concentration–
response curves as well as compounds inducing 
activity below the lowest tested concentration. 
The procedure effectively distinguishes sub-
stances with robust concentration–response 
profiles (ACTIVE*[±1] and ACTIVE*[±2]) and 
compounds with nonrobust concentration–
response profiles (INCONCLUSIVE*[±3]). 
Even so, inconclusive calls may correspond to 
real activity and can be considered active when 
there is increased concern to minimize false 
negatives (e.g., toxicity studies). Compounds 
without sufficient evidence for activity within 
the tested concentration range are placed into a 
final category (INACTIVE*).

The effects of sample size (n) are summa-
rized in Table 5. A small n may result from 
study designs with < 14 data points, data dis-
carded due to experimental failure, or outlier 
removal during curve fitting. Type  I error 
rates were < 0.03 in every case examined here 
(σ = 25%), whereas power and performance 
varied across parameter configurations. The 
performance of the classification algorithm 
was good (AUC > 0.9 in most cases) for 
almost all examined sample sizes (n = 4, 7, 9, 
11, 13, 14) with |RMAX| = 100% and AC50 
set to 0.001 μM or 0.1 μM. The algorithm 
performed well (AUC ≥ 0.75) under almost 
all scenarios in which the |RMAX| ≥ 25%, the 
modeled detection limit of the qHTS assay.

The three-stage algorithm can be imple-
mented in two steps in the freely available 
statistical software R (R Development Core 
Team, Vienna, Austria). Step 1 generates 
NLS and WNLS curve fits. Step 2 generates 
activity calls and other summary statistics 

from the output of Step 1. A computer with 
an Intel® Xeon® E5430 processor (2.66 GHz) 
and 2.92 GB of RAM was used with the 
Microsoft Windows® XP Professional Service 
Pack 3 operating system to obtain execution 
times for 1, 10, 100, and 1,000 chemicals. 
Due to possible memory constraints, it is 
recommended to use Linux machines when 
analyzing more than a few thousand chemi-
cals at a time. For Step 1, the run times were 
approximately (in seconds) 1.5, 6.2, 53.1, 
and 520.4, respectively, for NLS curve fits 
and 2.0, 8.2, 53.8, and 532.3, respectively, 
for WNLS curve fits. For Step 2, the run 
times to generate activity calls were approxi-
mately (in seconds) 0.1, 0.2, 1.9, and 18.5, 
respectively. The R code for the three-stage 
algorithm and all simulated data are available 
upon request.

Conclusion
An automated approach was developed to 
reliably classify concentration–response data 
into toxicologically relevant categories: actives 
(ACTIVE*[±1] or ACTIVE*[±2]), inconclu-
sives (INCONCLUSIVE*[±3]), and inactives 
(INACTIVE*). The algorithm strategically 
uses both unweighted and weighted statisti-
cal testing in a multiple-decision framework. 
Active substances are subdivided in two types: 
ACTIVE*[±1] compounds exhibit concen-
tration–response curves within the tested 
concentration range, whereas ACTIVE*[±2] 
substances have already achieved maximal 
response (or nearly maximal response) at the 
lowest tested concentration. The approach 
performed better than single-stage testing 
approaches and provides insight into nonlin-
ear modeling in high-throughput toxicology.

Table 5. Case 3 error rates and power of proposed method at 25% residual error for different sample sizes (n).a

True 
AC50

True 
|RMAX|

Type I error rate Power

4 7 9 11 13 14b 4 7 9 11 13 14b

0.001 25 0.004 
(0.0)

0.008 
(32.3)

0.014 
(72.1)

0.019 
(79.2)

0.019 
(83.2)

0.021 
(85.8)

0.076 
(0.0)

0.164* 
(7.0)

0.175* 
(11.1)

0.202* 
(20.3)

0.203* 
(22.4)

0.206* 
(18.2)

0.001 50 0.006 
(0.0)

0.008 
(57.4)

0.012 
(75.0)

0.017 
(82.7)

0.018 
(90.7)

0.020 
(87.9)

0.336** 
(0.0)

0.687** 
(1.5)

0.759** 
(4.1)

0.821** 
(6.0)

0.840** 
(6.7)

0.855** 
(7.7)

0.001 100 0.005 
(0.0)

0.009 
(39.7)

0.012 
(79.3)

0.016 
(85.8)

0.020 
(83.5)

0.024 
(86.8)

0.682** 
(0.0)

0.987** 
(1.9)

0.994** 
(5.5)

0.999** 
(10.0)

0.998** 
(14.5)

0.999** 
(15.3)

0.1 25 0.005 
(0.0)

0.008 
(40.3)

0.011 
(72.4)

0.018 
(80.7)

0.021 
(84.7)

0.023 
(87.3)

0.053 
(0.0)

0.101 
(20.9)

0.132* 
(45.6)

0.177* 
(62.7)

0.191* 
(71.7)

0.197* 
(73.1)

0.1 50 0.006 
(0.0)

0.008 
(39.1)

0.016 
(76.2)

0.018 
(84.6)

0.021 
(88.8)

0.020 
(87.4)

0.174* 
(0.0)

0.350** 
(18.3)

0.498** 
(37.0)

0.576** 
(53.0)

0.655** 
(64.8)

0.684** 
(71.2)

0.1 100 0.005 
(0.0)

0.010 
(46.8)

0.013 
(77.6)

0.018 
(85.7)

0.021 
(88.1)

0.024 
(84.9)

0.432* 
(0.0)

0.797** 
(31.2)

0.922** 
(63.4)

0.974** 
(82.6)

0.995** 
(92.7)

0.994** 
(94.4)

10 25 0.005 
(0.0)

0.011 
(37.8)

0.013 
(74.8)

0.017 
(79.0)

0.021 
(80.8)

0.022 
(88.3)

0.015 
(0.0)

0.029 
(54.4)

0.058 
(75.0)

0.082 
(89.6)

0.107 
(89.7)

0.100 
(93.5)

10 50 0.004 
(0.0)

0.008 
(43.5)

0.013 
(71.0)

0.018 
(85.8)

0.023 
(90.0)

0.022 
(89.0)

0.021 
(0.0)

0.070 
(56.1)

0.158* 
(73.7)

0.205* 
(83.2)

0.276* 
(89.7)

0.328* 
(89.9)

10 100 0.004 
(0.0)

0.009 
(39.1)

0.014 
(68.8)

0.018 
(90.8)

0.021 
(88.1)

0.019 
(92.0)

0.060 
(0.0)

0.217* 
(61.0)

0.417* 
(83.4)

0.620** 
(92.4)

0.761** 
(96.8)

0.791** 
(97.3)

aShown are the type I error rates and power as a fraction ranging from 0 to 1, with the percentage of ACTIVE*[1] actives out of the total actives (equal to ACTIVE*[1] / (ACTIVE*[1] + 
ACTIVE*[2]) × 100%) indicated in parentheses. bThe type I error rates and sensitivities from Case 1 (n = 14) are shown here for comparison. *AUC ≥ 0.75. **AUC ≥ 0.9. 
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